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NASA TT F-14,560

STATISTICAL THEORY OF INHOMOGENEQUS TURBULENCE
Part 1
J. Rotta

ABSTRACT. Differential equations for the statistical cor-
relation between two components of velocity variations are
derived from the Navier—-Stokes equations of motion and the
effect of the terms appearing in the equations discussed.,
Of special significance here are the correlations between
pressure variations and the variations of the velocity de~-
rivations, the purpose of which is to distribute the vari-
ations of velocity uniformly in all directions. A calcu-~
lated example of a shearing parallel flow demonstrates the
interaction of individual effects and makes comparisons
with experimental results possible.

1. Introduction

In turbulent flow, in addition to the Navier-Stokes equations for the
average flow motion, the base flow, other relationships, defining the connec-
tion between the turbulent stresses which occur in the equations of motion,
the so-called Reynolds stresses, and the rest of the flow values are needed
for calculation of the flow processes. Such a relationship is, e.g., the
statistical balance given in a work by L. Prandtl [1] for the total kinetic
energy of turbulent motion, as derived from the Navier-Stokes equations. The
following discussion continues the work of L. Prandtl, but takes another step
in the analysis of turbulent motion by individually considering the statisti-
cal equilibrium of the energy contained in the three components of the rate of
variations, which act perpendicularly to each other. A new effect, the ex-
change of energy between the different velocity components, is introduced.

In addition, differential equations are derived for ‘the correlations which
exist between two different velocity components; the equations demonstrate

the causes of the correlations.

Due to the correlations between pressure and velocity variations and the

three velocity components, no formal mathematical treatment of the differential

*Numbers in the margin indicate pagination in the foreign text.
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equations is possible. It is feasible to derive differential relationships /548
for tertiary correlations, etc. by repeated multiplication of the Navier-Stokes
equations of motion with one of the velocity components. However, further
development of this not entirely new idea does not lead to a solvable system

of equations, because the number of unknowns arising in the form of correla-

tions of higher degrees is greater than the number of equations obtained. The
further processing of the equations obtained thus requires additional physical
considerations, which in the present work shall be expressed by semiempirical

statements,

2. Differential Equations for the Components of the

Correlation Tensor

Let us first derive formally the relationships required in the considera-
tions. For this purpose, X, Cartesian coordinates shall be introduced with
i=1, 2, 3, Let Ui be the velocity component of the base flow (average val-
ue)l, ui the components of the rate of variation., Further, let P be the aver-
age value of pressure and p the variation in pressure., Only constant volume
flow shall be considered. The contiﬁuity condition must be satisfied both by

the base flow and the variation motions
3 3
oU; ou;
P e =0; St =0.
Phs Phr (2.1)

Then, in general, the Navier-Stokes equations of motion are the followings

5 U+ 3 (Ot ) o (Uit )
—— L) PP AUt @2.2)

© Averaging and combination of the stress components of molecular and turbulent
friction (Reynolds stresses) in an average stress tensor yields the following /549

expression for the components of this tensor:

mk=9[ (ax;‘ %k) Tu_k] .3

),
h

1. In the case of nonstationary spatially inhomogeneous flow, neither the us-
ual time averaging nor space averaging lead to a statistical description
of flow characteristics satisfactory with respect to theory. Averaging
over a large number of independent systems in which the flow processes un-
der consideration are assumed to occur under uniform conditions, yields

o more suitable resultss



and Eq. (2.2) may be written in the following familiar and clearer formi

. .
U; _ L i Tik
6! + Z k ax T e ox; + o Z 7 (2.4)
k=1 . k=1
Altogether, theve avce tarce (& ¢ 1y 2, 3) guch smuosions ¢f otion, The excess
’ .

unknowns are the components of the correlation tensor

72
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R=|wyu, u ugu,

: Ugtly  Up Uy U (2.5)

these are the tensor components of the Reynolds stresses divided by p.

A similar system of equations for the six unknowns uiuj may be obtained

by multiplying Eq 7 2\ hr 11 and avaraesine . Thia favmatt— —[ields'
3
' . au, Quy — &U;
%5 6! +ZU1$ +Zuk Zk ‘*“Z’llku,"a;;k'
= k==1
17 @ —
="‘?u7“a'f‘ +'V“1'Au’-.
(2.6)
The addition to this relationship of a corresponding equation obtained from
(2.6) by interchanging the indices i and j yields the desired system.
In order to detemmine the physical meaning of the individual temms to create
the conditions for semiempirical statements, certain transformations are re-

quired. Thus
3

3
auk B Z 6uk Z Z Ouj
- U, U
Z axk ax,, + uk u + & ’6rk

a=1 k=1 (2.7)

where the first temrm of the right side of Eq., (2.7); duc to the continuity
Eq. (2.1) ik equal to 0. Further

Bu; ou; —_— T
Au,-u ——22 MK u Aug - A

axk 3%;;

(2.8)
6 T ou ,  0p
and %? =p ”+4,ax.

2.9)

Application of these relationships yields /550
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614, oy A_
+2 Z axk 8xk -

Here, aik is the Kronecker symbol (6, = 1 for i=k, 61k =0 for 1 #k), A
total of six various equations of the Eq. (2.10) type can be obtained by select-
ing all possible combinations of i and j. Physical meanings can be discussed
in the most illustrative manner for i = j. Multiplication by 0/2 yields for

this case
’ -3
3 ey ] “ou;
Y ou’ au; %4
e g ) U T D 0tigm, P an
k=1 Rk

o =1

2 ot

—— f_-ﬁ‘———___—__q
xchange
Work of Ei‘ﬁﬁg’étivr vazied!

Reynolds 3 on - components

Total change in- -

ine’ anew i C
kine ot gy S‘EK@SS@B 3 . (2:11)
’ 0“4 20y =0.
oy ey v +uk(_ﬁ’_u?+6,~k1>)]_+91’2(~3xk) 0
ST 2 9xy 2 el
x=1 ) —_—
. Lem Dissipation
piffusion of * - *

- The normal Reynolds stresses of -0 ui may be interpreted as the double energy
content of the uy variations., Eq. (2.11) thus describes the equilibrium of
kinetic energy contained in a single variation component. The first two terms
of Eq. (2.11) state the substantial variation in time of the energy component
9/5%23 The third temm represents the work component of the Reynolds stresses,
which is being converted in the kinetic energy of the variation component U, .
The remaining temms, which will be discussed in more detail later, express the
exchange of energy, energy dissipation with other variation components and the

exchange of energy between different locations of the slow space (diffusien of

energy).



The energy contributions to the variation components are scalar magni-
tudes, The three Eq. (2.11) for the indices i = 1, 2, 3 can therefore be
summed and thus combined into a balance for the total variation energy. With

an average energy relative to unit mass

E={>u? (2.12)

3 3
o[ S0 > S

i=1 i=1 k=1

O R DN 010 RN (R

=1

therefore

This equation expresses Prandtl's argument in El]. The term representing the
energy exchange of the velocity components among each other, no longer appears

in this equation.

For unequal indices i # j, Eq. (2.10) presents a differential equation
for the correlation between two variation components ug and uj, acting per-
pendicularly upon each other., This U uj correlation is subject to effects
similar to those of the kinetic energy. The first two temms of Eq. (2.10)
describe variation in time and the convection of ﬁ;ﬁ}. The sums of the third
and fourth term state that existing variation components and potentially exist-
ing correlations between these, produce new correlations by way of the convec-
tion of fluid_garticles if the base flow is inhomogeneous. Thus, the square
of variation u% and the gradient an/axi furnishes a negative contribution to

the variation in time of the u,u, correlation

B TR i (2.14)

In the same manner, a negatlve contrivutica to aala /9t %5 obtained if a posi-
tive statistical correlation exists between the variation component uj and a

third component u, and if simultaneously a BUi/Bxk gradient also exists. Addi-

k
tional study shows that the generation of correlations between two components

acting perpendicularly upon each other can always be traced to effects of this
type. uiuj correlations can therefore be formed only if the base flow is non-

unifomm.
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The physical action of the rest of the tems in Eq. (2.10) cannot be ex-
plained as clearly as in the energy equations, but is closely related to the

action of the corresponding terms in Eq. (2.1l).

A few additional equations are needed for the connection between pressure
and velocity. Differentiation of Eq. (2.2) with respect to Xy and summation
over all i values yields, with consideration of the continuity condition in

Eq. (2.1), the following known expression for pressure

3 /2
1 @(Uk+uk) 3 U +“1) -
TAPrp) == > S (2.15)
, k=1 i=1
Averaging lcads to
. 3 3
1 oU, &U; = SCupu;\ -
-~ AP=_ Ik £y TueY
4 ;;(ax, axk 8xkax,~)' s (2.16)

Subtraction of this value from Eq. (2.15) results in the following expression

for pressure variations:

Sxy bx; GxpGxg

( s G )

||Mu

NS

3 -3 _— T3
“k
- 2
;; o Z (2.17)
These variations of pressure satisfy Poisson's differential equation; the ex-
pression at the right side of Eq. (2.17) represents the proof. For stationary
points located not too closely to the wall with a space vector of [, Green's

law yields the followings

3 3
1 1 \ CUk(T u;{r -+ ) d Vol
r= 2 [

k=1 i=1 (Vol)
d Vol (2 . 18)

3 3
1 Eugug Py, \] -

¥ —_ r +t

T«mZZ f{axkox. rte— Bxgox; E+o) -

k=1 i=1 (Vol).

3
with,r='ti= |/ 3& and "dVol=d&d&dss.

1=1

The variations of pressure thus are due to a component proportional to
the base flow velocities and a component generated by interactions between
different variation components. Eq. (2.18) will be useful in further investi-

gation.

2, Here , @ iy f’: represents the‘La_ql;‘lace ép'erator.kx‘




3. Energy Interchange Between Different Velocity Components

" Let us initially consider the correlations between pressure variations
au
and the variations of the velocity gradient ps—— Due to the continuity con-

dition in Eq. (2.1)
cuy Cuy
ZP ax‘ - P Z =
= : @3.1)

These terms therefore do not contribute to the total balance of kinetic energy.
In the derivation of the energy equation (2.13) for all three variation compo-

nents acting perpendicularly to each other, this is expressed by the elimina-

tion of the pagi tems, They effect only an interchange of energy between the
: i

different variation components. If the contributions due to the base flow are

initially neglected, such an exchange may be imagined approximately in the fol-

lowing manners

If two elements of turbulence (or turbulence spheres) move towards the 0
point, from different sides, parallel to the X axis (Figure 1), the fluid
between them will be displaced. If, at the same time, a pressure maximum
exists at 0, the ug component must do work and thus loses some of its kinetic
energy. The uj component, on the other hand, experiences acceleration, In

this case, therefore, the ug component loses energy to the uj component. Since

ou;
in the example aui/axi is negative at 0, pg;l is also negative, This consider-

su.
ation demonstrates clearly that in the case of a negative pg-%, the u, compo-
y iy s 3 u-
nent transfers energy to the other components., With a positive pgil, on the
. - i

other hand, the u; component receives energy from the other components.

i
It should be recalled in connection with the above considerations that
turbulence spheres have no solid boundaries and only a limited life time., They

thus do not represent immutable parts as e.g. , .

the molecules of a gas. Specifically, the N\ Ar

model of rigid spheres, so succegsful im tho \\ 01 %\\
kinetic theory of gases which coiilide clasti- \ fnl \

cally, cannot be used. If two turbulence

spheres, as shown in Figure 1, approach each Figure 1. Meeting of two
other and, finally, "collide" with each other, turbulence spheres.

they definitely lose their identity. The fluid mass which has been moving

/553
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uniformly, now flows in different directions. The kinetic energy, which is LEE&
being removed from the ug component through the instantaneous occurrence of
positive pressure at location 0, is distributed over two perpendicularly act-~
ing components, so that the energy imparted to the individual components is

in general less than the energy removed from the component in the direction

of the impact. This consideration pemits conclusions concerning the sign of
the exchange of energy. If, e.g., the square of the average value ;g is great-
er than the corresponding values of the other components, the collision in

the X direction will probably be more violent than in the other directions.
The energy transferred from the X5 direction to the velocity variations of
other directions will be greater in its statistical average than the energy
transmitted to the ug component by impacts perpendicular to the X, direction,

because only a part of the energy exchanged benefits the x; direction., It

)

follows from this consideration that the p-g;% correlation effects an exchange
i

of energy from the component with higher intensity to the component with lower

intensity. The ;)%%@ tems thus impart a tendency to the turbulence .to dis-

i
tribute the kinetic energy uniformly over all of the variation components.
This effect has already been pointed out by G. K. Batchelor [2] in the special

case of axial symmetry turbulence,

The simplest initial statement for a formal déscription of this effect
needed for further investigation, is based on the fact that the energy trans-

mitted in unit time from the u;

{ variation to the uj variation is proportional

to the difference in energy contained in these componentss % (ui -u‘j?). Since
ouy
the PSxo expression describes the entire loss of energy suffered by the u,
i e

i

variations in favor of the other velocity variations in unit time, pgggl is
x.
i

proportional to

where the line at the summation sign is intended to indicate that the case of
j=1iis to be omitted in the summation. In order to obtain'a fomula for the
quantitative determination of the exchange of energy between the different com- 1222
ponents, the expression obtained must be supplemented by a multiplier which is
independent of the i index and which gives the formula desired its correct
dimension for ;gﬁi s lee.

X

i
8



(Velocity)3/2

Length

Density -

This multiplier thus can be only [E/L times a pure number, where L is a length

characterizing the average size of turbulence elements, This yields
w0 VE(=m_ 2 p
P ="k L'("" P)J 3.2)

The magnitude of the empirical numerical factor kp, which depends on the
structure of the turbulence, will be indicated by experimental results dis-
cussed in Section 6, If the intensities of all three variation components are
equal (as in isotropic turbulence), then Eq. (3.2) does not result in an ex-

change of energy, as would be expected.

Gy

. . . i
Let us now undertake an interpretation and estimate of the 'p (ax * % =)

i
temms for i # j. Let us assume that two turbulence elements are approaching

point 0 in the manner shown in Figure 2; here again, the fluid in between is
being forced out. If a pressure maximum exists at 0, it is known from the
foregoing that un will gain in energy

at the expense of the ug component,

/4
\\00 ‘ The Ug component furnishes a positive,
‘§§ \\ . up a negative contribution to the uiuj
\ ¢ correlation; if, u§> u'ﬂ' then the sum

of the contribution of the two compo-

Iy . nents to uiuj is positive. The trans-
Figuze 2. 1hq detezmipation of fer of energy from the Ug component to
—rr————
[ & uj
(6q-+EZJ' un reduces the positive contribution

of u§ to uiuj and increases the nega-
tive contribution of up 3 the result is a negative contribution1xyauiuj/6t.

In the situation shown in the figure, both au./ax. and au./ax. are negative and

g auj
thus p(sz- + 5;—) is also negative., This explains how a positive average value

P -——J—

of p(s;— + szg) produces a negative contribution to aulu /ot as expressed in
Eq, (2.10).

In addition, with the aid of the fact that the transfer of energy always

occurs from a variation component larger on the average to smaller compgnents,

uy
: ay be seen that in the case of a positive u:u a negativ
it may p it4» @ neg tive p(3§- + s;f)



must be expected; as a result, the term under discussion tends to decrease an
existing ﬁ;ﬁ} correlagi%%{ This conclusion supplements statements made con-
cerning the effect of psz% so that it may be stated in a general manner:
correlations between presSure and velocity derivations effect a tendency of
turbulence to isotropy. This may also be formulated as followss 1in any field
of turbulence left to itself, isotropic distribution of velocity variations is
the most likely, An anisotropy of turbulence can be produced or maintained by

external effects only, e.g., by a superposed inhomogeneous base flow.
e s . . ouy ou; .
Quantitative determination of the temm p(s—- + SEJ) begins with Eq. (3.2)
Xj i

Let us consider initially only variations with vectors coinciding with the &
and T axes (with a small 42 scatter),

Ty ’
)
. 2 2
7 4 w Figure 3. If ug and uf, are the squares
of the averages of the variations, then
“y £ f their contribution to the correlation
Zi u,u, iss
1]

- Due to the inequality of the variation
Figure 3. The uiuj correlation,

components ug and up the kinetic energy
of these components varies; their differ-

ence may be calculated by Eq. (3.2) as follows:

(3.4)

Multiplication of these equations by El%—gé, division by g/2 and substitution

of Eq. (3.3) yields:

3 S
Zat".‘ = 2R;"(0) =2u;1,,.
o (3.5)

Following integration over the entire angular range, if Eq. (3.2) is considered

valid and i # js

(3.6)

where the numerical factor kp is identical with that of Eq., (3.2). 1In an en-

tirely general manner, the following expression is now stated

10
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which is valid for i = j as well as for i £ j. B . ?

/557
In an inhomogeneous base flow, Eq. (3.7) does not cover all of the effects.

Multiplying Ra_ (2.18) by au /Bx and averaging yields:

1 2_ B 0U1E+r ity ;
e znZZ [ S e T Y

I=1 m=1 (\ol) r

c“uyu,, 3:« a\’ol
nZZ J G e T ) 1YL

=1 m=1 (Vol) ’

(3.8)

o ‘ |
The second integral expression on the right side of this equation approximately

represents the contribution covered by the preceding considerations. The
- first integral expression on the right side of Eq, (3.8) must be emphasized
especially. For an estimate of its magnitude, aullaxm may be expanded in a
Taylor series, as suggested by P, Y. Chou [3]:
Py =g+ |
’ < : 2y £ (3.9)

+Z;!Z ZZ ox, 0%, . x,axm‘f"‘f"”'*"

The first expression on ti:2 right side of Eq. (3.8) can now be integrated by

tems, if the um(E +r)ui(£) correlation between the velocity components effec-
tive simultaneously at two different locations of space, is known, so that

this contribution can be brought into the following forms
° |

3 3
_1—_ d“" —_ aUl, mi Z Z . q Ul ml
o P oz, _Z Z Fr i Pt
3 (3.10)
C"“ -*_ ees |

G, Exy nE i
I=1 m=1 n=1 k=1 ]

+

DM
JW

NP

Q!

1‘(

Qﬂ.’»
.S‘

Estimates indicate that this series expansion as a rule converges well, Under

the assumption, rather well satisfied by most flows, that approximately

PYN BT £ JRNETIN o BTN g p

the following relationship follows from Green's theorem (see Appendix) for

values of a 8 sy — _p VE ,

3.11)

11



and the continu%ty condition yieldss . /558
v 3 :

. 3 3
al mi__ . Ny miE . i R .
20 =0 Xafi=0;  Rpi=0; 3 pni=o;
i= m= .

|

. _ (3.12)
nkc;’:i:‘O; anc;':;fzo; etc. . )

_1 T o1 .

The ! and j indices are interchangeable in the case of a, b aLd ¢ the follow-

i=

ing is valid for the interchangeability of m and is

ar=apidr=,0m
bUtI bimz_ bmi (3.13)

n iy nolf °

These relationships may be useful in the estimation of the values of a, b and

¢, if the um(g-ﬁf)ui(g) function is not accurately known. Let us add certain

values valid for isotropic turbulence (for derivation see Appendix)s

independent of Reynolds

ij i ivjj

ali=0,4u7; axzzasﬂﬁ JLni=o0; number
Oi=—0,52ul L2 di— 2283 L;
3 ' .71 11 ] +
Ahi=—0104u7L%  ci=+4062u7L% ¢ for large Reynolds numbers
kkc;;z + 0’2071‘_?1‘2;
i __ w2T2 i 22"
;O =—0,243 u; L2 i 1,07 %3 L2;
cli= — 0,049 4% L2; = 40,2022 [2; ¢ for small Reynolds numbers

cii== 0,097 1% L2.

RRj1

As the reference length L for turbulence, the integral over the coefficient

7
u‘- "‘-

8lr) = e .
4 V (3.14)

~ 73
u; g

of the correlation between the parallel velocity components at points 0 and 0*,

at distance r perpendicularly to this velocity component (Figure 4) has been

s

selected: o
L= [g(r)dr.
0 (3.15)
4. The Dissipation of Energy /559

In the expressions . , . I

L S — _
WS T g ST
CXp CXxp N Exk
k=1 k=1

12



in Egs, (2.10) and (2.11) the effect of viscosity is described; in essence,
this consists of the dissipation of energy. Let us first discuss the boundary
cases of an infinitely large Reynolds number Re = V EL/v and of an infinitely

small Re number.

In the case of very large Reynolds numbers the turbulent motion consists
of elements of numerous different orders of magnitude. The kinetic energy is
contained mainly in the large elements
of turbulence, while the most important
contributions to 253275;;32 are pro-

5 vided by the small elements. However,
g all turbulence which is anisotropic in
! large elements, is isotropic in small

2
] ! J elements, in the case of large Re num-

g u bers. The causes of this phenomenon,

Figure 4, Correlation functions which represents one of the most impor-

in isot ic turbulence
ropic t nece. tant results of more recent turbulence

f ﬁﬂ=-ﬁ%%;;gw)=vggﬁ'\ research, has been explained, e.g., by

‘ C. F. v. Wizsacker [4]. It may also

be said, with A. N, Kolmogoroff [5],
[6], that the turbulence is locally
isotropic, i.e., if the variations of the velocity vector at an arbitrary point,
with respect to the instantaneous velocity at a fixed point in space, is viewed,
the variations will be isotropic in their statistical average, provided that

the points considered are within a sufficiently small range. The cause of this
behavior ié to be found in the characteristic of turbulence described in Sec-
tion 3, according to which an isotropic variation distribution is most probable
if no external effects are effective. External effects affect almost exclu-

sively large elements only, so that the small elements are isotropic.
4 3 ’
Since thus = 255173§k52 is essentially produced by small elements, the
k=1
term is identical for all three indices i = 1, 2, 3. Total dissipation S in

the case of large Re numbers (see e.g. L. Prandtl [1]) then is

. 3 3 3 a
_ g z~ _Ez
SFV‘ZZ(&Q) = }:_

3 3 _ .
3. The temms vza Su; Oup

isotropy. & @ ox

which appear in the general case, disappear due to

13
3



where ¢ is a dimensionless number which depends to a limited degree on the /560

structure of the turbulence. Then, for large Re
3 TR ~3
,;Z(.‘?ﬁi_)“zgl% ) (4.2)

Due to local isotropy, in the case of small elements, no correlation can exist

-TY—-_EU’
o) 3 e} Z
between aui/ x, and uj/ x,+ For this reason, the (ax 5——) expressions are

3 —33——-
becoming arbitrarily small with respectix;kzl(sil)z. It is therefore permis-

sible to set, with sufficiently large Re numbers, for i # js
3
Z Qu; ouj L -
Bxy Bxy _ (4.3)

Behavior in the case of extremely small Reynolds numbers is fundamentally
different., Turbulence here consiéts of elements which differ little in their
magnitude, Elements which contribute the most essential part to energy, also
contribute much to 133;73§;$2 and these elements contributing the most to
(Bui/axka proportionally contain a high amount of energy. For this reason,
the energy dissipated by the uy variation component is proportional to the

kinetic energy contained in it, i.e., for Re~ (s
3
Z(Eui)ﬂ_i 1
8)’}2 - 2 fz" (4,,4)

oui ou . . s
for the same reasons, the v 5-J correlation is also proportional to the
Xk “Xk

value of uiuj, thus

(4.5)

The magnitude of the ¢, numerical factor in general depends on the choice of

) 1
the i and j indices, but an approximately uniform order of magnitude can be
expected. In the boundary case in which the turbulent motion consists only of

sine waves with a single length, one obtains:

P
o= % =2776. ] (4.6)

For isotropic turbulence, in accordance with the theory of G. K. Batchelor and
A. A. Townsend [10] or J. Rotta [12] the value of c, is:

14



= 57 _3g27.
G="3- =39 I C47)

The mode of transition between these two asymptotic laws can be deter- 1221
mined approximately from theoretical and experimental investigations of iso-
tropic turbulencej these also provide some information concerning the magni-
tude of ¢ in Egs. (4.1) and (4.2). The value defined by Eq. (3.15) was chosen
as the reference length L for the measured results evaluated in Figure 5; the
results are of different origin [7] to [11]. The measurements cover a rather
broad range of Re numbers. The dependence of dissipation on the Reynolds num-
ber can be approximately determined by calculation with the condition that a
statistical equilibrium exists for the spectral distribution of the energy of
variation [12]. Here, a general constant ® occurs in the determination of
turbulent energy exchange processes between elements of different magnitude

(see the work of W, Heisenberg [13]).

For the purpose of a first approximation, based on Figure 5, the follow-
ing interpolation formula is proposed:

E
S=ve4z +c

E¥Y
‘ (4.8)

L

According to Figure 5, approximately ¢ = 0,202 (with Heisenberg's constant % =
0.28), The transfer of this interpolation formula [Eq. (4.8)] to the expres-

sions of interest would yield
. s . _ ,

: du; \2 ¢ u} ¢ Et

DIBECHEE Y s

and generally for i = j and i # j

. . ) .
cug. duj g 1y 2¢ EB
29 s S0t Y it A AR S L
ZS a7, Pxp vrpE % g (4.10)

These expressions will be considered valid for later discussions and cal- /562

culations.
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Figure 5. Energy dissipation in isotropic turbulence.

"5, Diffusion Temms

If the terms of Eqs. (2.10) and (2.11) are interpreted as slij vectors

with components

au,

o =—vig +uku.u,+<a,ku+6.ku>”/ (5.1)

then

s -
o 'Ol( u, d
Z [ NPT w; (05 14; + O ;) ] 1v£),” (5.2)

The tems therefore can be transformed into surface integrals during the inte-
gration of Eqs. (2.10), (2.11) and (2.13) over a closed area of space, in ac-
cordance with the Gaussian integral theorem. It follows clearly fromi‘this

characteristic that these terms describe a transport of the statistical char-

acteristic ﬁ;ﬁ; and of kinetic energy, briefly, a turbulent diffusion of uj U
i.e., a diffusion of energy. The processes are caused by a correlation between
three velocity components, correlations between pressure and velocity fluctua-
tions and by viscosity effects and have their origin in the spatial inhomogen-
eity of turbulence. Although in numerous cases the terms are highly important
for the overall mechanism of flow processes, there are certain flows or at least
certain areas in the flow space in which these diffusions disappear or have

only a negligible effect. Let us consider such a flow in more detail in the
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following section and interrupt the discussion of diffusion terms at this

point, to be continued at a later occasion,

6, Turbulent, Parallel Shear Flow

" As an example of the application of the relationship given in the fore-
going, let us examine a parallel shear flow in which the stationary base flow

velocity coincides with the x, axis and is a function of x, only. To further

simplify the problem, the eneigy diffusion contributions are set equal to 0.
Rigorously, of course, this is permissible in special cases only, e.g., in
universal turbulent wall flow in which shear stress is constant and viscosity
is very low. However, calculations without diffusion terms demonstrate very
well the essentials of turbulent shear flow. Measured results obtained by H.
Reichardt [14] and J, Laufer [15] in a rectangular channel, make a comparison
with theory possible. The case under discussion is realized in the outer
areas only, because flow in the central channel zone is affected considerably

by the diffusion terms neglected.

The energy equations in Eq. (2.11) are reduced to

3
~—— qU; T ouy Gy \2 \
a2 +v2(5;§) —o0,

f‘”P%€§+”ZS“ﬂg): | (6.1)

6::;_.

———

It is seen from the equations that the entire kinetic energy, which is being
transferred from the base flow by way of the Reynolds stress —-guiu2 into tur-
bulent_energy, is transfommed directly only into longitudinal fluctuation en-
ergy puilz. The energy imparted to longitudinal fluctuations is dissipated

in part into heat by the uy component and in part transferred by the expres-

. ou{ . .
sion ;)5§+ to the u, and u, components and thus used to maintain the u, and
ug fluctuations, which in their mean are stationary. The fact that a transfer

of energy takes place from the uy fluctuation to the other fluctuation compo-~

nents, follows from the statement that the VK§ZZ§;I7S;;3§ dissipation contri-
butions can be positive only. The addition of all three equations in Eq. (6.1)
yields the balance of the total energy of turbulent motion in accordance with
Eq. (2.13) ' '
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DI (‘?m) = (6.2)

i=1 k=1

In order to determine the correlation function u Uy, another equation is

1
required; it may be obtained from Eq. (2.10) with i = 1; j = 23
— dU, 1 Gu cu {“g =0.
ug?;:‘—_?gp(Aaxl 2) Z 5 aVk 0 (6.3)

This equation replaces the conventional expression based on the concept that
turbulent shear stress originates in momentum transport proportional to the

velocity gradient dUl/dx2

J— dU B
Uy Ug == dxa

\

Here, ¢ is the so-called exchange factor which has the dimension of kinematic
viscosity.

Following the introduction of the statements of Egqs. (3.7), (3.10), (4.8)
and (4.10) in Egs. (6.1), (6.2) and (6.3), the fluctuation squares and the cor-
relation can be calculated, if dUl/dx2 and L are considered given values,
Specifically, for pressure fluctuations and velocity derivations the follow-

ing is substituted:

#U, ky VE )
21 1P V (uf— E) '

LTt -2 R (- 1),
: o —ar i fh - IR (@3,
rrsm ot -2 E@-E) L 6w
Lp(G o) =G ad T l
+(; 2512+22522) (f;Ua —‘kp IILF Uy Uy '
The following considerations are used to estimate the values of ai% and 22¢ ilg

321

Due to Eq. 3. 11), 1n1t1a11y ii = 23;5; is valid; because according to
experience the uy fluctuatlon.ls larger on the average than the u, fluctuation,
the following estimate is made, based on results obtained for isotropic tur-
bulence:

ail= 0,41, u, (6.4a)
and accordingly, for large Reynolds numbers

18



2002l = — Q1040 uy L2 / (6.4b)

It follows further from the continuity condition in Eq. (3.12)
ai} +aif =~ 04 u uy,
22012 + 5oChs = + 0,104 1, 1y L2

Since in the present case no additional information is available concerning

the structure of turbulence, let us sets

(6.4c)

2 23
ajj= a3 =—02u u,, }

2 2
220%; = 22612 = 0.052 Uy 142L .

This simplification renders the equations of the fluctuation energy of EE? u,

and ug components identical in accordance with Eq. (6.1), so that u, = ug. /565

Calculations for isotropic turbulence yields

a?? =0,8u; 22022 = 0,62 ?ZEZZ.J' (6. lfd)

To estimate ai%, the continuity expressed in Eq. (3.12) and the exchange
rules of Eq. (3.13) must be useds
11 12 13
a3 +a12 +a13 =0,
a1+ a3 +all=o0,
a3) + a3} a3l = 0.
. s . . 2 _ 2 22 _
Since, due to the simplification made in Eq. (6.4c) leading to U, = Uz, a5, =

agg will also be true, it follows from the same system of equation that

aggz_éa;}=—o,2z7‘./ (6.4e)

22612 = — 2901 =0¢052E;'L2.——]Q (6.4f)

Prior to attempting solutions of the Eq. (6.1) system, let us examine the
extent to which available measurements qualitatively ¢onfirm the theory and
its simplifications. The experiments of [14], [15] indicate substantially
greater values for the uy fluctuations than for the rest of the components.
Since it was concluded rigorously from Eq. (6.1) that a transfer of energy
takes place from uy to u, and Ugs an exchange of energy occurs, in accordance
with statements in Section 3, from higher intensity fluctuation components to

those of lower intemsity. 1In addition, the equality of the fluctuation squares

ug and ug has been confirmed by the experiments of J, Laufer [15]. Finally,
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the spectra measured by J. Laufer confimm the existence of local isotropy.
These spectra exhibit a certain fluctuation intensity above a certain fre-

quency, but no correlation which indicates isotropy in this frequency range.

_ oup oup . oul ., 1
The relationship (3—- 8")/(’“‘) ~3 calculated from the second momentum of
3'5—?3—‘u
the spectra, however, suggests that the magnitude of v . 3—— 5—— is in

fact greater than the amount obtained by calculation from Eq. (4.10) with
corresponding Reynolds numbers. In addition, local isotropy was shown ex- 1292
perimentally to exist in the turbulent wake of a cylinder by A. A. Townsend
[16]'and at the edge of a cylindrical jet by S. Corrsion [17]. It also fol-

lows from the theory of local isotropy that with large Re numbers one-third

of the energy introduced by the longitudinal fluctuation u, is dissipated im-
mediately, while two-thirds are transferred by the temm p‘sgi to the other

components.

Let us next apply the calculations to the case of very large Reynolds
numbers where temms depending on viscosity can be eliminated. Let us investi-
gate the universal wall flow in which the well-known logarithmic law is valid
between the base flow velocity U, and the wall distance X, 80 that the follow-
ing relationship exists between the third and first derivation

®U, 2 dU, -’

=2
dx2 x5 dxg

The second equation in Eq. (6. 1) -- after elimination of u;u 2%51 -~ then yields
2

with Eq. (6.2)

DT

= [1—- (o4+0312 )] 6.5

This provides the first indication of the magnitude of kp, of which nothing

has been known so far. Since ;g can only be positive, kp> 0.4 c must be true,

—

For u1 then

,§=~{1+2 @4+am2~ﬁ) (6.6)

Substitution of Eqs. (6.5) and (6.6) in Eqs. (6.3) and (6.2) yields, after

some calculation

%_:b;;;g=:(32;3(az"‘“24 )[m—.~(04-+03497-”4—‘\' 6.7)
+(o,2—o.1~i;-)[1+ 5‘(04+031°M)}} Ve ZZ:%
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For L/x2 = constant, this fommula conforms entirely with the Prandtl mixing

path theorem. If the length L is set so that it equals the mixing path, i.e.

L~0.4x2, thens

c \?
140.92- ‘
(0,122 ———c’fi") A=y,

thus ¢ (6.8)

¢ =>[o‘izz -k“; (1 +0,9 k’;)] )

This definition of L thus establishes a relationship between the values of ¢
and k . If a certain value of c/kp is assumed (c/kp< 2.5), then ¢ and thus
kp may be obtained from Eq. (6.8). Such calculated results are compiled in

Table 1 and thus important comparative values are given for use with experi-

mental values,

_TARLE 1 .

ity ¢ kp _yz_: l/ .‘i_L N 7 T

Ve w , Vitui
0.5 0,162 0,324 1,802 ] 0,731 ©0,4217
0.6 0,194 0323 . 1750 | 0,689 0,475

| o7 0228 | 0326 | 1708 0648 | 0530 |

0.8 0,262 0,327 1,674 0,610 0,585
0,9 0,298 0,321 1,646 l 0,573 0,644

An experimental determination of the cross correlation function in a tube
by G. I. Taylor Ell] yielded for the tube center L =£g(r) dr = 0.14 tube radi-
us; this value corresponds exactly to the magnitude of the mixing length as
evaluated by J. Nikuradse [18] so that it may be assumed that the value of L
in accordance with Eq. (3.15) and the mixing pathl!at high Reynolds numbers are
actually of the same order of magnitude. According to Table 1, the ¢ factor
is generally of the order of magnitude of the evaluation results of isotropic
turbulence (Figure 5). The evaluations performed by K. Wiechardt in connection
with the work of L. Prandtl [1], yielded ¢c~0.18 to 0.21. Boundary layer

measurements showed that the value of u1/V /@ is about 1.7 to 1,18 .(see also
J. Botta [19]); the measurements of [14], [15] did not yield unifomm results

in this respect, peak valueé are in part around 7/ T/0> 2, The ratio of

the fluctuatlon components v / \/ 1, accordlng to H, Reichardt [14] and J,
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Laufer [15] is 1/2 to 1/3. According to the measurements cited, [14], [15],
the correlation coefficient is 0.45 to 0.5. Taking all of the experimental
results into consideration, calculations with c/kp = 0.7 appears to agree best
with actual conditions. In any case, the statement may be made that the cal-
culated results are overall in approximate agreement with experimental obser-

vations, both qualitatively and quantitatively.

With inclusion of the viscosity and a Reynolds number of Re = \[ﬁL/v
of turbulence, the following expressions are obtained in the case of a simple
parallel shear flow (d2U1/dx§ and higher derivatives are set equal to 0), /568
for the most important valuess

L. Gfkp 1
o4 2404 kp-{—zq EJ (6.9)
— gty = 1.3 Bo 721490 | 4y,
3 B e ’
. %
Rep oo _ | /o4 2F04 gt 2a i 80
R b dn (6.10)
P kp(5+“cl) y . / .
Re

From these equations :1_]':{1-2- can be detemmined, if dU1/d Xy, L and v are given.
The execution of the calculation was based on the value of ¢y = 57/4, obtained
theoretically for isotropic turbulence; it was confimed experimentally in
wind tunnel experiments [10]. It was assumed, on the other hand, that k_ is
independent of the Reynolds mumber, although a certain dependence is generally
conceivable. It may be assumed that kp retains at least the same order of mag-

nitude over the entire Reynolds number range.

20 — =
-G ke K «
== 2| dt| dty L —T g6 |/
b L NVufuf L iz |z — B
: | ‘ dar L
~ - ]
& Ej% 10— N\ /7 =5 |-,:?ﬂ-q£
I L 1/ uy 146
318 1 V=5V = i
N . fuj uf ] l‘"‘u“
" a5 7 ] 35 3
= / aY) [z, eanst as
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Figure 6, Statistical values and correlation of velocity fluctuations
in parallel shear flow,
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Figure 6 summarizes the results of such calculations in dimensionless

duy (d _l .
ax a;— over the Re number -;7 ax. In the dia-

2 72 2 dU1 dUl
gram the case of Re-+* oo is represented by the straight line -U UG, /12

1%2 dx2 dx2
1.93, With decreasing Reynolds numbers -G, deg ines to 0. The remarkable
2 as—l- ‘

result that below a certain Reynolds number L X2 no stationary turbulent
, v
state of equilibrium can exist, can also be derived from the total energy equa-

fom, by plotting -u,u, u,u, / Igl

tion in Eq. (6.2). Acscordian So tho Gouchy-Schwarz inequality /569

(0 263)* < w28,

Since the dissipation in EQ( (6.2) 4o always positive, Uy U, is always negative

with a p031t1ve dUI/dv - Firther. because of Eq. (2.12)

ul—{—u" —_ i
E>-L° , i.e. itf§'<2E——1_tlz

thus .
(1) < Wi (2E —u¥) < E2.

Thereforé, if d.Ul/dx2 is poslt%veg

According to Eqs (4.8)

it then follows fre— T ¢4 2 chnv
- v
1=1 k=1 k (6.11)

so that as a rough estimate of the boundary of a possible turbulent flow state

which is stationary in its mean, the following is obtained
U,
(I‘ 'd__a:;.) >c
v /T8B! (6.12)

The value of this estimate lies in the fact that most of the assumptions of
Sections 3 and 4 can be eliminated in the confirmation of the qualitative cor-
rectness of the curves shown in Figure 6, A more accurate value for the “tur-

bulence boundary" is obtained from Eq. (6.10) for lim Re -~ O as

(L_EH
dxg_
5 )TB =1,77 ¢, = G,94. (6.13)
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Below this turbulence limit only laminar flow is possible, while above the
limit both laminar and turbulent flow may exist. Under certain conditionms,
this fact is of importance with respect to the problem of the transition from

laminar to turbulent flow.

In Figure € +he correlation coefficient

04 (2 40,4 e+ 2,4 ""/k”) (.i. 4 .‘1/’??)

iy, 3 3 kp Re J\kp ' Re (6 )
Vaa 2| (ros ot s @) (i—os oo i -14
143 _ +0'8k,.+1‘8 Yo 1—0,4 kp+0,,) Re
and the relationship
- 104 ootk ‘
2 1—0,4 kp+o.6 7o
) "y 1+0.8_i+103ﬁ2_ : (6.15)
kp Re
I . .
are also plotted over the Reynolds nunbcr v deno The correlation coefficient
2

increases with decreasing Reynolds numbers, which has been confirmed qualita-

tively by the measurements of J. Laufer [ 15]; \/;E;/ u% on the other hand, de-

clines with the Reynolds number.

éggendix

Let us designate the correlation between the fluctuations of the velocity

component u; o polnt 0(g) and u_at 0* (g +1r)
R (g, 1) = %:(8) tm(E + 1) (A.1)

In homogeneous turbulence, in whieh all statistical choracteristics are inde-
pendent of the position vector ¢ , this function is dependent on the vector v

only and diflcrentiaticn ylelds the well-known expression (see Karman & Howarth

[20])s Clefse |tk

Wz B+ DY @fup

(A.2)

where §i are the components ofy . This relationship may be considered as a
rule approximately valid in the general case of inhomogeneous turbulence also.

The coefficients of Eq. (3.10) thus are

a,"‘,." —— 1 (PRI gy
2z dE 28 T, (A.3)
(Vol) Y
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e 1 . 32R;”(l‘) ¢ dVol (A. 4)

nlj 27 Ws" T’
(vol) ™
. 2R (¢
iy == e g8, 4l (4.5)
v <l 5,' r
(Vol)
(A.3) further yields /571
.8
1 & b2 F; d Vol
amd — — . (_.+__ ~_)Rm vol
Z T ) aw ey e RO (4.6)
According to Green®s thoowmaa, Lt Zollows frea Bge (8.11) that

ORI =A() T 45, B,

(A.7)

The anE can have values other than O only if the R?(r) function is not sym-
metrical. With the relationship

(A.8)
which is rigorously valid for homogeneous turbulence, but only approximately
for inhomogeneous turbulence, Eqs. (A.3), (A.4) and (A.5) directly yield the

exchange rules for the indices given in Eq. (3.13).
In the case of isotropic turbulence, the correlation function [20] iss

(A.9)

where (Figure 4)

[=+}

' F(k
“10) =f 2<rk()z)
’ 0

(Sin rk_ cos rk) dk.
rk
(A.10)

The f(r) function is related to the energy spectrum F(k) in the following man-

ner [13]; here k is the wave number

AQ) = (1) ~g)) ~— 2, &
B(r)=uig(r)=ulj(r)—A4 () (A.11)

The different integral moments which occur in the sauares of Eqs. (A.3) and

(A.5), are calculazed by

) Wz * Y u? 1.
[aw "-;—=—7f12‘r—)d,r=—2—f(0)= N | (4.12)
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0 K (A.132)
and further with Eq. (A.1ll)
fA(r)rdr—Zf PO dr, | \ (A+13b)
fB(r)rdr—u ff'r)rdhf A()rdr= 16

The value of Eq. (A.12) is independent of the special fomm of the correlation /572
- function £(r) and thus of the Re number., The values of a?? therefore do not
depend on the Reynolds number in the case of isotropic turbulence. The Eq.

(A.13) expréssion, on the other hand, depends on the energy spectrum and thus

on the Reynolds number Re = \[EL « For very large Reynolds numbers, where the
spectrum follows the form lng(k)cn k4 for small wave numbers and the form
F(K) & k™ -5/3 for large wave numbers based on the calculations of J. Rotta [127F,

the following is valid

f P8 ar=2722210.

(A.15)
For small Re numbers, where the spectrum has the form of
F(k) 123 2L5k4 ~4/,,sz=
[F®) 5, _ 4372 ,
f.kg.dk_nu,l,. - (A:16)

If Eqs. (A.3), (A.4) and (A.5) are based on the statement of Eqs. (A.9) and
(A.10), then the squares, with the use of Eqs. (A.12), (A.13), (A.14), (A.15)
and (A.16) lead to the values given in Section 3.
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